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Thermocapillary transport of energy during water evaporation
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When evaporation occurs at a spherical water-vapor interface maintained at the circular mouth of a small
funnel, studies of the energy transport have indicated that thermal conduction alone does not provide enough
energy to evaporate the liquid at the observed rate. If the Gibbs model of the interface is adopted and the
“surface-thermal capacity” is assigned a value of 30.6+0.8 kJ/(m? K), then for evaporation experiments with
the interfacial temperature in the range —10 °C<7"Y<3.5 °C and Marangoni number (Ma) in the range
100<Ma<22,000, it was found that if energy transport by both thermocapillary convection and thermal
conduction were taken into account, conservation of energy was fully satisfied. The question addressed herein
is whether the assigned value of the surface-thermal capacity is an ad hoc empirical parameter or a property of
the water-vapor interface that can be used in other circumstances. Accordingly, a series of experiments has
been conducted in which water evaporated at cylindrical interfaces that were, on average, 4.4 times larger in
area than that of the spherical interfaces used to measure the surface-thermal capacity initially. It is shown that
using the value of the surface-thermal capacity determined at a spherical interface, the energy transported by
thermocapillary convection and thermal conduction at a cylindrical interface is sufficient to evaporate the
liquid at the observed rate. Knowing the value of the surface-thermal capacity also allows the local evaporation
flux to be calculated from the measured temperature profiles in the liquid and vapor phases. The calculated
local evaporation flux can then be used with statistical rate theory to calculate the vapor-phase pressure along
the interface. The predicted mean vapor-phase pressure is in close agreement with that measured, and the

predicted pressure gradient is consistent with that expected when thermocapillary convection is present.

DOI: 10.1103/PhysRevE.72.056303
I. INTRODUCTION

Studies of energy transport to a spherical water-vapor in-
terface maintained at the mouth of a circular stainless-steel
funnel while the water evaporates under conditions that en-
sure the absence of buoyancy-driven convection in both the
liquid and vapor phases have indicated that three steady-
state, energy-transport regimes can be defined using the Ma-
rangoni number [1] as the defining parameter [2,3].

In the first, when the evaporation rate is small enough so
that Ma is less than ~100, the interface is quiescent and
thermal conduction to the interface (Stefan condition) pro-
vides the energy transport required to evaporate the liquid at
the observed rate.

The second regime occurs when 100 <<Ma<<22,000. This
regime can be reached by lowering the pressure in the vapor
phase while maintaining the temperature of water entering
the funnel throat at a value just less than 4 °C. The lower
pressure increases the evaporation rate and cools the liquid
phase at the interface. Since water has its maximum density
at 4 °C and the density decreases monotonically with further
decreases in temperature, the temperature field ensured that
there was no buoyancy-driven convection. Thermocapillary
convection was present and gave rise to a uniform-
temperature layer [2,3] immediately below the interface. In
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this regime, thermal conduction no longer provides sufficient
energy transport to evaporate the liquid at the observed rate.
Since the temperature at the funnel throat was constant, ther-
mal energy was conducted through the stainless-steel funnel
to the funnel rim where the liquid was heated. This produced
a parabolic temperature field at the liquid-vapor interface,
with the higher temperature at the funnel rim and minimum
on the center line. It is this temperature profile that produced
the thermocapillary convection. But since there is no
buoyancy-driven convection in the liquid bulk, the type of
convection produced when both thermocapillary and
buoyancy-driven (Marangoni-Bénard) convection [4] are ac-
tive was not present in the experiments.

A method of analyzing the energy transport in this regime
has been proposed [3]. It is based on the Gibbs [5] dividing-
surface approximation and leads to the definition of an ex-
cess property that represents the thermal capacity per unit
area of the interface: if n*" is the excess moles per unit area,
u"V the internal energy per excess mole, and ¢V the specific
heat of the excess moles, then the “surface-thermal capacity”
is the product n*Ye! and is denoted as ¢, [3].

When the energy transported to the interface by ther-
mocapillary convection and thermal conduction are equated
to the energy required to evaporate the liquid at the observed
rate, one finds that the value of the surface-thermal capacity
can be determined from a measurement of the evaporation
rate and the temperature profiles in the liquid and vapor
phases [3]. In each of nine experiments in which 100<Ma
<22,000 and the average evaporation flux j,, was in

the range 0.10 g/(m?s)<j,,<3.38 g/(m?s), the surface-
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thermal capacity was found to have the same value
30.6+0.8 kJ/(m? K).

In the third regime Ma>22,000 the interfacial flow is
turbulent and viscous dissipation is important [2,3]. Once the
value of the surface-thermal capacity had been determined
from the experiments conducted in the second regime, its
value was used in the third regime to determine the viscous
dissipation [3]. The viscous dissipation determined in this
way for the turbulent interfacial convection was found to
increase almost linearly with the maximum thermocapillary-
generated interfacial speed.

Since the surface-thermal capacity was found to be con-
stant over a wide range of experimental conditions, the re-
sults suggest that ¢ is a property of water that is defined in
terms of the Gibbs dividing-surface approximation. How-
ever, the possibility exists that the value obtained for ¢, is ad
hoc: since in each of the nine experiments the water-vapor
interface was very nearly spherical, the interfacial curvature
had approximately the same value in all experiments,
0.151£0.003 mm~', and the value of c, is larger than one
would expect for an equilibrium interface [3]. The objective
of this study is to treat surface-thermal capacity as a property
of water that does not change significantly when the interfa-
cial temperature 7" is in the range —12 °C<T<3.5°C
and then to use this property in a predictive sense.

To determine if ¢, can be used in this way, a series of
experiments has been performed in which water was main-
tained at the rectangular mouth of a stainless-steel channel
while evaporating under steady-state conditions. This gives a
cylindrically shaped interface. The interfacial temperature
TV was in the range where the surface-thermal capacity is
expected to be unchanging; the Marangoni number was in
the range 5,800 <<Ma<22,000—thus the experiments were
in the second or third regimes—but in contrast with the
experiments of [3], the shape of the water-vapor inter-
face was cylindrical. This changed the curvature to
0.109+0.014 mm~" in one direction and zero in the other.

More importantly, the area of the cylindrical interface was
increased by, on average, a factor of 4.4, compared to that of
the spherical interfaces that were used to measure c,. Before
the interface becomes turbulent, the measured value of the
thermocapillary energy transport reaches ~50% of the total
required to evaporate the liquid at the measured rate. Thus, if
there were a significant error in the value of ¢, it would have
been clearly seen when the predictions were compared with
measurements. Using the previously recorded value of c,, it
is shown that the predicted values of the thermocapillary
convection and thermal conduction sum to give the energy
transport required to evaporate the liquid at the measured
rate. Thus we did not identify any error in the value of
c,—above the +2.5% suggested in [3]—from the compari-
sons made at the cylindrical interface.

The value of surface-thermal capacity is examined further
by using it to calculate the local evaporation flux j,,. De-
pending on the total evaporation rate, we find that j,, can be
strongly nonuniform. The measured values of the interfacial
temperatures in the liquid and vapor phases, T,L and T}/, and
the values of j,, may be used with statistical rate theory
(SRT) [6-20] to predict the local vapor-phase pressure along
the interface. Since SRT introduces no fitting parameters, the
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FIG. 1. Schematic of the stainless-steel channel used in the
study. Note the rectangular mouth of the channel. As a result, water
at the channel mouth formed a cylindrical surface.

predicted pressure can be compared directly with that mea-
sured. The calculated mean of the vapor-phase pressures on
the liquid-vapor interface is found to be in agreement with
the measured value of the vapor-phase pressure, but perhaps
more importantly, the local pressure along the interface can
be calculated as a function of position and the predicted pres-
sure gradient is consistent with that expected when ther-
mocapillary flow is present in the direction indicated by the
measured temperature profile.

II. EXPERIMENTAL METHODS AND RESULTS

The experimental apparatus has been previously described
[21] and is similar to the ones used in [2,3]. The important
difference is that the funnel, with its circular mouth, used in
[2,3] is replaced by the stainless-steel, V-shaped channel
with a rectangular mouth. It is shown schematically in Fig. 1.

In preparation for an experiment, purified water (resistiv-
ity 18.0M()-cm) was placed in a glass flask. The vapor
phase of the flask was connected through a valving system to
a mechanical vacuum pump that allowed the water to be
degassed and then transferred through a stainless-steel tube
directly into a syringe that was mounted in a pump. Water
could be pumped from the syringe into the bottom of the
stainless-steel channel that was enclosed in a vacuum cham-
ber. A (type-K, sheathed, 25.4-um-diam) thermocouple was
placed inside the tube with the bead at the junction of the
tube and the channel. A separate cooling system could bring
the temperature at this position to a chosen value. The values
chosen for each experiment are listed in Table I. The cham-
ber was connected to two pumping systems: one was a tur-
bomolecular and associated backing pump, and the other was
a mechanical vacuum pump. As indicated in Fig. 1, when
water filled the channel, the interface was cylindrically
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TABLE I. Thermal conditions measured in three dimensions during steady state.

PHYSICAL REVIEW E 72, 056303 (2005)

Experiment: EvCl1 EvC2 EvC3 EvC4 EvC5
Vapor-phase pressure (Pa) 661.3+13.3 551.9+13.3 469.3+13.3 317.3+13.3 256.0+13.3
Max. intf. height above 1.00+0.01 1.00+0.01 0.70+0.01 1.00+0.01 0.91+0.01
channel mouth (mm)

Avg. evap. flux (g/m?s) 0.92+0.01 1.52+0.02 1.64+0.02 3.26+0.03 3.48+0.04
Throat temperature (°C) 3.52+0.05 3.52+0.05 3.67+0.05 3.62+0.05 3.67+0.06
Unif. temp. layer” (mm) 0.090+0.015 0.095+0.010 0.075+0.010 0.055+0.010 0.025+0.010
Marangoni No. 5,831 11,186 13,602 20,778 22,012
Max. tangential speed (mm/s) 0.766+0.027 0.782+0.056 0.721+0.016 0.852+0.018 0.931+0.016
Interfacial radius rq (mm) 8.50+0.09 8.50+0.09 11.78+0.12 8.50+0.09 9.25+0.09
Est. error: total energy +2.4 +4.8 +2.0 +2.0 +2.5
transport to interface (%)

Intf. vap. temp. (°C) 2.40+0.02 —-0.06+0.02 -1.86+0.03 —-7.01+0.02 -9.78+0.02
p=arcsin(0.0/r)

Intf. lig. temp. (°C) 1.13+0.02 -1.45+0.02 -3.41+0.02 -8.63+0.02 -11.65+0.02
p=arcsin(0.0/r)

Intf. vap. temp. (°C) 2.23+0.02 —-0.20+0.02 -1.84+0.03 —6.99+0.02 -9.81+0.02
p=arcsin(1.0/r)

Intf. lig. temp. (°C) 1.17+0.02 —-1.48+0.02 -3.34+0.02 —8.57+0.02 -11.79+0.02
p=arcsin(1.0/r)

Intf. vap. temp. (°C) 2.27+0.02 —-0.09+0.02 -1.71+0.02 -6.92+0.02 -9.75+0.02
e=arcsin(2.0/ry)

Intf. lig. temp. (°C) 1.19+0.02 -1.48+0.02 -3.31+0.02 —-8.49+0.02 —-11.68+0.02
e=arcsin(2.0/ry)

Intf. vap. temp. (°C) 2.18+0.02 -0.12+0.02 -1.67+0.02 -6.81+0.02 -9.59+0.02°
p=arcsin(3.0/r)

Intf. lig. temp. (°C) 1.17+0.02 —-1.38+0.02 -3.11+0.02 —-8.53+0.02 ~11.66+0.02°
p=arcsin(3.0/rg)

Intf. vap. temp. (°C) 2.20+0.02 —-0.11+0.02 -1.53+0.02 —6.58+0.02 -9.16+0.02
p=arcsin(3.5/rg)

Intf. lig. temp. (°C) 1.26+0.02 -1.39+0.02 -3.15+0.02 —-8.26+0.02 -10.70+0.02
p=arcsin(3.5/rg)

On the central plane.

At @=arcsin(2.5/ry).

shaped. A (type-K) thermocouple constructed of  mechanical pump was then used to evacuate the chamber

25.4- um-diam wires was formed into a U shape, with a hori-
zontal section 3 mm in length and with the thermocouple
bead—~50 wum in diameter—at the center. The thermo-
couple was mounted on a positioner that had a positioning
accuracy of +10 um in any of the three dimensions and al-
lowed the temperature to be measured in the liquid and vapor
phases with an accuracy +0.04 K. The positions on the inter-
face where the temperature was measured are indicated in
Fig. 1.

Before each experiment, the pressure in the vacuum
chamber was reduced to 1073 Pa by pumping with the turbo-
molecular pump for approximately 12 h. The prepared water
was then pumped into the bottom of the channel and up to
the rectangular mouth of the channel where the water-vapor
interface was visible from outside the vacuum chamber. To
prevent subsequent bubble formation, the pressure in the
chamber was increased to ~2.5 bars and held at this value
for approximately 30 min. Approximately ~4 ml of water
was flushed out of the channel and into the chamber. The

until it was dry.

The height of the liquid-vapor interface in each experi-
ment above the channel mouth was limited to ~1 mm (Table
I). When the measured height of the interface was compared
with that calculated assuming the interface was cylindrical,
the error in the height at the five polar positions in the middle
of the cylinder indicated in Fig. 1 was less than 1.5% for any
experiment; however, there was some error at the ends of the
rectangular mouth that was closed by glass plates. A menis-
cus was present at each plate that caused a deviation from the
cylindrical shape. This error is neglected in the analysis.

III. EXPERIMENTAL PROCEDURE AND RESULTS

The temperature at the entry to the channel was set at a
value just less than 4 °C in each experiment—the tempera-
ture of maximum water density—and the evaporation at the
interface cooled the water further so that the lightest water in
the channel was at the highest point. Similarly, the coldest
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FIG. 2. Temperatures measured in the vertical direction at each
of five horizontal distances from the central plane of the cylindrical
water-vapor interface during experiment EvC4 (Table I).

vapor was at the liquid-vapor interface. Thus there was no
buoyancy-driven convection in either phase. This technique
to eliminate buoyancy-driven convection has been applied
previously [2,3].

After the temperature at the channel entry had been set,
the evacuation rate of the chamber and the syringe pumping
rate were adjusted so the water injection rate into the channel
was equal to the evaporation rate. As a result, the water-
vapor interface was unmoving. The position of the interface
could be monitored with a cathetometer from outside the
vacuum chamber. Once the interface had been brought into
steady state, it did not move by more +10 wm during the
course of an experiment. During the steady-state period, the
pressure was measured with a manometer at a position
~10 cm above the mouth of the channel. With water evapo-
rating under steady-state conditions and the other experimen-
tal variables set (Table I), the moveable thermocouple was
used to measure the temperature profile as a function of ver-
tical distance at each of the nine points indicated in Fig. 1.

The results obtained on the central plane of a cylindrical
water-vapor interface in the middle of the channel mouth and
at four horizontal distances from the central plane in one
horizontal direction, during EvC4 (Table I), are shown in
Fig. 2. Note that at each position, the interfacial vapor tem-
perature was found to be greater than the interfacial liquid
temperature, as has been found in other experiments
[2,3,6—10,21]; there was a thin liquid layer immediately be-
low the interface in which the temperature was uniform; and
below the uniform-temperature layer, the temperature in-
creased linearly with depth [2,3,6]. As will be seen, the
thickness of the uniform-temperature layer is an important
parameter used to determine the thermocapillary flow rate
[2]. The value of this parameter was determined by immers-
ing the thermocouple bead in the liquid just below the
interface and moving it to successively greater depths in
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FIG. 3. Measurements during EvC4 (Table I) of (three left-hand
graphs) the interfacial liquid temperature, the depth of the uniform-
temperature layer, and the magnitude of the interfacial temperature
discontinuity plotted as a function of the axial position. However, in
a direction perpendicular to the central plane and in the middle of
the channel, the temperature as a function of position (upper graph),
the depth of the uniform temperature layer (middle graph), and the
magnitude of the temperature discontinuity are shown as a function
of the distance from the central plane of the cylindrical water-vapor
interface.

~20-um steps. In a series of readings at different positions,
the temperature values were found not to be statistically dif-
ferent. The thickness of the uniform-temperature layer is de-
termined by the depth for which this relation is maintained.

As indicated in Fig. 3, the temperature field was almost
unchanging with axial position, but as a function of distance
from the central plane the temperature increased, reaching a
maximum near the intersection of the water-vapor interface
with the mouth of the channel.

IV. ANALYSIS OF EXPERIMENTAL RESULTS

The Marangoni number was used in [3] to describe the
flow regimes produced by thermocapillary convection. If the
surface tension is denoted by 9"V, the temperature of the
water at the entry to the channel by T,L, the temperature on
the central plane at the liquid-vapor interface by Té,, the
thermal diffusivity of the liquid by «;, the dynamic viscosity
by 7, and the vertical distance from the throat thermocouple
to the liquid-vapor interface on the central plane by D, then
the Marangoni number can be expressed

aW) (Tg;— T7)D
aT /, arm '

Ma:( (1)

The values of Ma for each experiment are given in Table I,
and in Fig. 4, the values of the Ma for the experiments de-
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FIG. 4. The Marangoni number of the evaporation experiments
conducted with a cylindrical water-vapor interface compared with
that of the experiments performed using a spherical interface [3].
Note that four of the five experiments described in Table I were
such that Ma<22,000 and therefore were expected to be in the
second regime of interfacial flow (see the Introduction).

scribed in Table I are compared with those of the experi-
ments in which water evaporated at a spherical water-vapor
interface [3]. Note that four of the five experiments described
in Table I were such that 100 <Ma < 22,000 and Ma for the
other one had a value greater than 22,000. Thus, EvCI-EvC4
are expected to be in the second regime where, for evapora-
tion from a spherical interface, thermal conduction to the
interface does not supply sufficient energy to evaporate the
liquid at the observed rate; the remainder of the energy trans-
port is expected to be supplied by thermocapillary convec-
tion. Also, in this regime, viscous dissipation is negligible.

To investigate the second regime when evaporation occurs
at a cylindrically shaped interface, we again adopt the Gibbs
dividing-surface approximation and treat the interface region
as consisting of three phases: liquid, vapor, and interface. As
indicated in [3], in this approximation the internal energy per
excess mole, uY, may be expressed in terms of the excess
entropy per unit surface area, oV, and the surface area per
excess mole, V. Note that the latter is the inverse of the
number of excess moles n”" per unit surface area:

dutV = THVdat + Vda. 2)

A Helmholtz function for the surface phase, f-', may be
defined as

fLV = LtLV _ TLVO'LV; (3)
then,
dftV=— o"VdT" + Vda'V. (4)

From Eq. (4), it follows that /¥ has as its independent vari-
ables 7"V and oY and that o*¥ can be expressed in terms of
these same variables. It then follows from Eq. (3) that

uLV= uLV(TLV,aLV). (5)
We shall make use of Eq. (5) below.
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The velocity in either bulk phase is denoted as »“, where
ais L or V, and the velocity on the interface by »*". We shall
approximate the interface as cylindrical with radius r, and
use cylindrical coordinates ¢ and y to define a position on
the interface. Under steady-state conditions, the molar flux to
the interface must equal that, leaving

ntvp i, =0 vl 0+ VL) i+ V(P i, (6)

where the subscript 7 on a quantity indicates it is to be evalu-
ated at the interface. We take the evaporation flux to be given
by

jev=nLV1L'ir=nVV;/'ir' ()
Then Eq. (6) reduces to
V(") i+ VYY) iy =0. (8)

Also, under steady-state conditions the net energy trans-
ported into a surface element must go into the change of
phase or viscous dissipation:

(nLhLVL— kv TL)I i,.= (nvhvvv— % TV)I i+ D,
+ [nLVV‘LPV(VuLV)I
+ut’v (nLVVfDV)I] g,

+ [nLVV;JV(VuLV),

AU VOS] ()
After combining Egs. (7) and (8) with Eq. (9),
WLV [ gl
(K'V T = VT, = o (Y = hY),+ (—“’— s
To I /y
L’
+ (nLVuf,V)(“—) + @) . (10)
i &y @ 1
The specific heat of the surface phase, ¢!V, is given by
L’
V= (u_) . (11)
dT ] v

If use is made of Egs. (5) and (11), then Eq. (10) may be
written

(K'VTY = K-V T, -,

Vv
st Bl ) )
< To (9()0 y ‘9()0 vy I

LY v
+(nLVv§V)(cLV<(9ay )(P+ yLV((yﬁy >¢)1+ ®,. (12)

We neglect any variation in o’V with position on the inter-
face, and in view of the results shown in Fig. 3, any variation
in T*V with changes in axial position y. Also, we take T"V
and v"V to have the same value T+ and v¥, respectively. After
making use of the definition of ¢,, Eq. (12) may then be
simplified to

LV L
dr

(B =B = (K VTV = VT, i - ﬂﬂ“—(—’) —®,
ro \de

(13)
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There was, as indicated in Fig. 3, a gradient of Tf in the i A
direction. To determine the thermocapillary flow in that di-
rection, V(LPV, we follow the method proposed in [2] for
evaporation at a spherical interface and equate the gradient in
surface tension in that direction to the viscous stress in that
direction. After neglecting the dependence V,L on ¢, this con-
dition gives

r0< dT,L do -7 o r n (14)

Except for the change of variable definition, this is the same
form of equation as obtained in [2]; thus, the same procedure
may be used to determine the approximate solution:

R F
Vfo_< 2o \ e In{ 1 ) (15)

where o, is the thickness of the uniform-temperature layer.
As seen in Fig. 3, §, depends on ¢, but shows little depen-
dence on y. The transport of energy at the interface is gov-
erned by Egs. (13) and (15).

Energy transport to the interface

For the nonturbulent experiments (Ma<22,000), the vis-
cous dissipation is negligible, and since the variation of (A"
—hb), in any particular experiment was less than 1%, when
Eq. (13) is integrated over the interface, one finds

m Ty aTt
J,(hY = hb), = 2lmr0f |:KV<_> - KL(_> }d(p
0 191‘ I (9}’ I

. o LTL)
(21,¢,) fo va(a(P de. (16)

where the length of the rectangular mouth opening is /,, and
¢,, is the maximum value of the polar angle. If 2r,, is the
width of the mouth opening, then

O = arcsin{r—m] , (17)
To

and we have assumed the properties are symmetric about a

central plane through ¢=0.

For each experiment, the value of the energy required to
evaporate the liquid at the observed rate, J,,(h" =A%), may
be determined in two ways: one is to measure the values of
J,, and use the known values of the enthalpies; the other is to
calculate the value of the terms on the left-hand side of Eq.
(16). To make this calculation, the value of surface-thermal
capacity ¢, must be used, and we shall use the value deter-
mined for a spherical interface in [3]. By comparing the
value of J,,(h¥—h"), determined in these two ways, we may
determine if the surface-thermal capacity behaves as a prop-
erty of the water-vapor interface.

We first consider a method by which the measurements
may be used to calculate J,,(h¥—h"), using Eq. (16). The
measured interfacial temperatures and the depth of the
uniform-temperature layer are each such that they may be
described by the same type of equations:
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FIG. 5. Comparison of the energy required to evaporate the
liquid at the measured rate with that calculated by thermal conduc-
tion alone (dashed line) and that calculated by thermal conduction
and thermocapillary convection (solid, 45° line). The calculated
amount by thermocapillary convection is based on c, having a
value 30.6 kJ/(m? K). Note that at the higher evaporation rate, ther-
mal conduction accounts for only ~50% of the total energy trans-
port rate.

TV = ay+ a, sin* ¢, (18)

8,=bo+ b, sin* @, (19)

where the constants (ag,by,a,,b;) are determined numeri-
cally for each experiment. We note that the empirical rela-
tions given in Egs. (18) and (19) for the cylindrically shaped
interface are different than the corresponding ones used for
the spherical interface [3].

The local thermal conduction to the interface from the
liquid and vapor phases can be determined from temperature
measurements, such as those shown in Fig. 2:

v L v L
) ) sl ) %))

or /; or/; cose 0z /; oz /g
(20)

and we find that

T’ aT*
KV(_> - KL<_> = o+ ¢y COS @+ ¢y cOs% @ + ¢35 COS° @,
or I or I )

21

where ¢;(0<j< 3) are constants that may be determined for
each experiment. When Egs. (18), (19), and (20) are used in
Eq. (16) and c,, is assigned the value 30.6 kJ/(m? K) [3], one
calculates the values of J,,(h"—h); shown in Fig. 5 for each
of the nonturbulent experiments. The error bars in the ther-

mal conduction, A(QN), results from the error in the mea-
sured position, A(r), error in the measured temperature,
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A(mT""), and the error in the fitting relations or calculated
temperature, A(cT"V). Then [22,23],

A(QN) = [AMNT +[AmT™) P+ [A(TMF. (22)

Similarly, the error in the thermocapillary convection, A(TC)
[see Eq. (16)], is taken to result from the error in A(c,), in
the thermocapillary speed, A(Viv), and A(&T,L/&go):

A(TC) =VA(c,)?* + A(Vév)2 + A(ITH ). (23)

The estimated error in c,, obtained in [3] was +2.5%. We take
the same value for the error in ¢, at the cylindrical interface.
Then the error in the calculated total energy transport to the
interface is the sum of the error in the thermal conduction
and the thermocapillary convection. The values of the esti-
mated errors in the total energy flux to the interface in each
of the experiments are listed in Table I.

As may be seen from Fig. 5, there was no measured dis-
agreement between the sum of the energy transported by
thermocapillary convection and thermal conduction and the
energy required to evaporate the liquid at the observed rate.
Also, when the liquid was evaporating at the highest rate, we
note that the energy supplied by the thermal conduction only
accounts for ~50% of the total. Since in these experiments
the area of the liquid-vapor interface was on average 4.4
times larger than the area of spherical interface used to mea-
sure the value of c,, but nonetheless the predicted total en-
ergy transport based on the value of c, satisfies the energy
conservation principle, the results suggest that the recorded
value of ¢, is not in error by more than +2.5%.

Only one of the experiments was in the turbulent regime
(Ma>22,000). It has been previously found that in this re-
gime, the character of the interfacial flow changes and the
viscous dissipation becomes non-negligible [2,3]. Since the
value of the surface-thermal capacity has been established,
we may follow the procedure of [3] to determine the value of

the viscous dissipation averaged over the surface, ®;:

_ 1\ [ T’ aT* iV (drt
ol ) <l =22
bm/ Jo ar /g ar /g o de

Jev(hv_hL)I

24
2lm”0 Pm ( )

The value of <I_>, for EvC5 (Table 1) is shown in Fig. 6 where
it may be compared with that obtained at the spherical inter-
face. The results there indicate that when the maximum ther-
mocapillary speed has the same value at a spherical interface
as at a cylindrical interface and the interfacial flow is turbu-
lent in both cases, the viscous dissipation is larger at the
spherical interface.

V. PREDICTION OF THE VAPOR-PHASE PRESSURE

The fact that the value of the surface-thermal capacity c,
determined from the study of evaporation at a spherical
water-vapor interface can be applied to predict the energy
transport by thermocapillary convection at a cylindrical in-
terface supports the hypothesis that this quantity is a property
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FIG. 6. Comparison of the viscous dissipation at a spherical
interface [3] (EV16-EV19) and at a cylindrical interface once the
interfacial flow becomes turbulent.

of the water-vapor interface when the Gibbs dividing-surface
approximation is used to define the interface region. This
result can be examined further by first using Eq. (13) to
calculate the local evaporation flux and then using statistical
rate theory to calculate the local vapor-phase pressure.

From Egs. (13), (15), (18), and (19), one finds the local
evaporation fluxes j,, shown in Fig. 7 for each experiment.
Note that the evaporation flux is strongly nonuniform, espe-
cially at the higher evaporation rates, and that the maximum
occurs near the solid surface.

The expression for the evaporation flux may be obtained
from statistical rate theory [7,11,12]. If the evaporation pro-
cess is taking place in an isolated system, statistical rate
theory gives the expression for the evaporation flux at one
instant, in terms of a virtual change in the entropy at that

Evaporation Flux, j, (g/m?s)

1 2 3 4
Distance from Central Plane {(mm)

FIG. 7. Calculated local evaporation flux assuming that the
surface-thermal capacity ¢, has a value of 30.6 kJ/(m? K) in each
of the five experiments being considered (Table I). The solid circles
indicate the values calculated at the measurement point of each
experiment.
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instant that results from one molecule going from the liquid
to the vapor phase, As;y the Boltzmann constant kg, and the
equilibrium exchange flux that would exist between the lig-
uid and vapor phases when the isolated system finally
evolved to equilibrium, K, [7]:

jm,: 2K€ Sinh(ASLv/kB). (25)

The change in the entropy may be expressed in terms of the
chemical potentials u* and u', the temperatures in each
phase, and enthalpy in the vapor phase, 1":

L v
Mg 1
A T N
v\ Ty )
An approximate expression for As;y can be obtained from
statistical mechanics [7]:

A T/ 11
kg T Ty T

oS <@+ Rk ) oK)
o \2kg  exp(hwlkgT)) -1 kgTy
VTL
< pys 20D p
)

T_Y)“(PAT?))] (qvib(T,V))
““[(Tf P R VY R

where a subscript s indicates the property is to be evaluated
at the saturation condition between a liquid and vapor phase
across a flat surface and g;, is the vibrational partition func-
tion. It may be written in terms of the fundamental vibration
frequencies of the water molecule, w; (1 <I/<3):

’ eXp(— ﬁwl/szT[)
Qvib = H .
=1 1- exp(— ﬁwl/kBT,)

(28)

Their values of the frequencies have been measured: 1,590,
3,651, and 3,756 cm™! [24]. We assume that when the iso-
lated system evolves to equilibrium the interface can still be
approximated as cylindrical with radius r and the final tem-
perature will be approximately the instantaneous interfacial
liquid temperature. The equilibrium exchange rate is ob-
tained from equality of the chemical potentials in the liquid
phase. This leads to an equation that may be solved itera-
tively to determine the pressure in the liquid phase, P, in
the final equilibrium state of the isolated system:

L V(L
i Ps(TL)exp{ Pl - a(#)]} 0
BY 1

The equilibrium exchange rate then is given by

VL
P‘Y(ﬁ)exp( k—;L[Pég - PX(T%)])
K — B

e

7 7 (30)
\N2mmkgT;

If the values of Tf, T}/, Jey» and rq are given at one instant,
Egs. (25)-(30) constitute a coupled system, with no adjust-
able parameters, that can be used to predict the vapor-phase
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FIG. 8. Values of the local vapor-phase pressure on the liquid-
vapor interface in each of the experiments predicted from statistical
rate theory with the value of the surface-thermal capacity ¢, taken
to be 30.6 kJ/(m?K) in the calculations.

pressure at a point on the liquid-vapor interface at the instant
considered. In the isolated system, the properties would
evolve to other values with time. However, we assume that if
the instantaneous values of Tf, T}/, Jews and 1 are the same in
a steady-state system and in the isolated system at one in-
stant, then at that instant the vapor-phase pressure will have
the same value in the two systems.

This allows the vapor-phase pressure at each measure-
ment point on the liquid-vapor interface to be predicted. The
values of the interfacial liquid and vapor temperatures at
each measurement point and the radius of the liquid-vapor
interface for each experiment are listed in Table I, and the
values of the local evaporation flux is shown in Fig. 7. When
these values are used in Egs. (25)—(30), one finds the values
of the local vapor-phase pressures that are shown in Fig. 8
for each of the five experiments. The pressure is slightly
higher near the intersection of the water-vapor interface with
the channel mouth than on the central plane of the water-
vapor interface. This is physically reasonable, since the ther-
mocapillary flow is toward the central plane of the water-
vapor interface (see Fig. 3). However, a more rigorous test is
to compare the average pressure on the interface with that
measured in the vapor phase during the steady-state period of
each experiment. The averages of the calculated values are
shown in Fig. 9 where they may be compared with the mea-
sured values of the vapor-phase pressure. The error bars on
the measurements of the vapor-phase pressure are taken to be
+13.3 Pa, the reading error of the manometer. The very close
agreement between the predicted and measured pressures in-
dicates that the calculated local flux obtained from the value
of surface-thermal capacity leads to an accurate prediction of
the pressure. This supports treating ¢, as a property and in-
dicates that for water its value is near 30.6 kJ/(m? K) when
—-12°C=<T<35"°C.

VI. DISCUSSION AND CONCLUSION

The water at the rectangular mouth of the stainless-steel
channel (see Fig. 1) formed a cylindrically shaped interface.
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FIG. 9. Comparison of the measured vapor-phase pressure with

the mean vapor-phase pressure predicted from statistical rate theory

with the surface-thermal capacity c, taken to have a value of
30.6 kJ/(m? K).

The temperature of the water entering the rectangular chan-
nel was slightly less than 4 °C and colder still at the liquid-
vapor interface. Since water has it maximum density at 4 °C,
the temperature field ensured that there was no buoyancy-
driven convection in the liquid phase, as the water evapo-
rated under steady-state conditions [2,3,21].

If one imagines a plane through the center line of the
cylindrical interface and the rectangular mouth of the chan-
nel, the interfacial temperature field changed negligibly with
axial position, but in the direction perpendicular to the plane,
the temperature field was parabolic. Thermal conduction
through the wall of the stainless-steel channel heated the lig-
uid at the channel rim, and since the thermal conductivity of
stainless steel is more than 20 times that of water, the para-
bolic temperature profile had its maximum at the channel rim
and minimum where the interface intersected the plane (Fig.
3). This temperature profile gave rise to thermocapillary flow
from the channel rim towards the plane, but at the intersec-
tion of the interface and plane, the colder, and therefore
lighter, water had to penetrate the heavier water below the
interface. This penetration was resisted by buoyancy. The
ratio of the maximum thermocapillary flow toward the plane
from the rim to the flow perpendicular to the interface ranged
from 260 to 835 in the series of experiments. As a result, in
each experiment, there was a return flow below the interface
from the central plane toward the rim. The oppositely di-
rected thermocapillary and return flows interacted to give
rise to mixing and the resulting uniform-temperature layer
(see Fig. 3). We note that since buoyancy-driven convection
was not possible, the thermocapillary convection did not give
rise to fluid motion in the bulk liquid phase of the type nor-
mally associated with Marangoni-Bénard convection [4].
The fluid velocity below the uniform-temperature layer, v*,
was assumed to be that produced by the syringe pump.

At the interface, there was a temperature discontinuity,
with the temperature in the vapor greater than that in the
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liquid. The magnitude of the temperature discontinuity in-
creased with the evaporation flux. However, at a given
evaporation flux, the magnitude of the temperature disconti-
nuity was less than that at a spherical interface. For example,
at an average evaporation flux of 3.42 g/(m?s), at the
spherical liquid-vapor interface, the temperature discontinu-
ity was 4.55 °C and the interface curvature was 0.151 mm™".
Whereas when the evaporation flux was 3.48 g/(m?s) at the
cylindrical interface, the temperature discontinuity was
2.07 °C and the curvature of the cylindrical interface was
0.109 mm™! in one direction and zero in the other. This com-
parison suggests that the temperature discontinuity is smaller
at a interface with smaller curvature. A recent analysis based
on classical kinetic theory [25] suggested that the tempera-
ture discontinuity should be smaller at an interface of smaller
curvature. A cylindrical interface was not explicitly treated in
[25], but the comparison suggests a sensitivity of the tem-
perature discontinuity to curvature.

These authors also suggests that statistical rate theory
does not give an expression for the energy flux at the inter-
face; however, we note that in the analysis that we per-
formed, the energy flux from the liquid to the vapor phase is
taken to be j,,(hV—ht), where j,, is predicted from statistical
rate theory. This expression introduces no adjustable
parameters—unlike classical kinetic theory [25]—and gives
a quantitative expression for the energy flux that appears in
agreement with the measurements (see below).

Below the uniform-temperature layer, the temperature
profile was linear with depth (see Fig. 2). The energy flux
vector (nthtv*—kEV TE), was used in the analysis [see Eq.
(9)] to determine the energy flux to the bottom of the
uniform-temperature layer. Since the system was operating
in steady state, it was assumed that this energy was trans-
ported across the uniform-temperature layer to the interface
by mixing. When the principles of energy and molar conser-
vation were applied to an element of the interface, Eq. (13)
was obtained, and when this equation was integrated over the
interface—for the nonturbulent experiments—Eq. (16) was
obtained. The left-hand side of the latter equation defines the
energy required to evaporate the liquid at the measured rate
and the right-hand side the energy transported to the inter-
face by thermal conduction and by thermocapillary convec-
tion.

The error bars assigned to the measurements were deter-
mined from Eq. (16). The value of the error in ¢, was taken
to be the same as that determined in [3], £2.5%. As may be
seen in Fig. 5, all of the measurements were within the error
bars. Since the area of the interfaces in these experiments
was (on average) 4.4 times larger than that of the spherical
interfaces used to measure c,, initially [3] and the energy
transport by the thermocapillary energy transport was up to a
total of 50% of the total, the agreement seen in Fig. 5 indi-
cates that the error in ¢, was no more than +2.5%.

The value of ¢, was examined in a second way: taking the
value of c, to be 30.6 kJ/(m? K), the local evaporation flux
Je» Was calculated from Egs. (13), (15), (18), and (19) to
obtain the results shown in Fig. 7; statistical rate theory was
then used with these values of j,, to determine the local
pressure on the interface (Fig. 8). We note that this implicitly
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assumes that the energy flux from the liquid to the vapor is
jeu(Y=h"),. The mean value of the local pressures was cal-
culated, and as seen in Fig. 9, no disagreement was found
between the measured pressure in the vapor phase and the
mean of the predicted local pressures. Although the predicted
gradient in pressure was small, it was consistent with what
one would expect on the basis of thermocapillary convection.
The agreement between the measured and calculated pres-
sures also supports the hypothesis that ¢, is a property of the
liquid-vapor interface and that its value is near
30.6 kJ/(m? K) for the interfacial temperature range consid-
ered in these experiments. This agreement indirectly supports
the expression for the energy flux being j,,(hV—ht),.

We note that statistical rate theory has been previously
used to predict the pressure at which a liquid evaporates [7,9]
or condenses [6] at a particular rate. In those studies evapo-
ration or condensation took place at a spherical interface and
the mean evaporation flux was calculated by dividing the
measured evaporation rate by the interfacial area. The tem-
perature on the center line of the spherical interface, which
was subsequently found to be the position of the minimum
temperature [2], and the calculated mean flux were used in
statistical rate theory to calculate the vapor-phase pressure.
For the spherical interface, very good agreement was found
between the measured vapor-phase pressure and that pre-
dicted for evaporation of three different liquids (including
water) and the condensation of water. However, for evapora-
tion from a cylindrical interface as indicated by Fig. 7, the
evaporation flux is strongly position dependent and assuming
a uniform flux would not have been valid in this case.

Since statistical rate theory indicates the evaporation flux
depends strongly on the vapor-phase pressure [11], one
might have expected that the predicted vapor-phase pressure
would have been the inverse of the evaporation flux (Fig. 7),
but this conjecture would have ignored the interfacial tem-
perature profile. As seen in Fig. 3, the temperature was also a
maximum near the stainless-steel mouth opening. The net
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result is that the vapor-phase pressure is almost uniform, but
is slightly larger at the maximum radial distance from the
central plane of the cylindrical interface. This seems a rea-
sonable result, since the thermocapillary flow was toward the
central plane of the cylindrical interface; thus, the flow of the
vapor would also have been expected to be in that direction.

The volumetric specific heat for bulk water at 0 °C is
4.23 % 10% kJ/(m?* K). Although this value can not be com-
pared quantitatively with the inferred value of the surface-
thermal capacity at present [3], arguments could be advanced
to suggest that the proposed value of c,, is larger than would
be expected, at least at an equilibrium interface. In [3], a
qualitative argument is offered to suggest that the larger than
expected value of ¢, arises from the hydrogen bonding of
water as described in the random network model [26-28]
that has been shown to account qualitatively for certain sur-
face properties of water [28]. A necessary condition for the
validity of the argument advanced in [3] is that ¢, has the
same value at a larger-sized interface. The results found in
this study satisfy this condition. A second necessary condi-
tion for the hydrogen-bonding explanation to be valid is that
¢, has a similar, larger-than-expected value for other hydro-
gen bonding liquids. This condition has been examined by
determining the value of ¢, for D,0 [29]. It is found to share
many the characteristics of ¢, for H,O and to be only
slightly larger.
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